
Characterizing Test Parameters for
Software Fuzzing Applied to MDA

Tactical Software
To: MDA University Innovation Summit

By: LeMonté Green, Ph.D.
MDA Engineering, CES
Missile Defense Agency

Approved for Public Release
21-MDA-10707 (23 Feb 21)

Software Fuzzing –
Testing Software for Vulnerabilities

• Software Fuzzing is a method of software testing where
random permutations of data are fed to a program in
order to trigger unforeseen behavior.
– Fuzz testing (fuzzing) is a dynamic application security testing

technique
– Fuzzers send malformed inputs to targets. Their objective is to

trigger bad behaviors, such as crashes, infinite loops, and/or
memory leaks

Approved for Public Release
21-MDA-10707 (23 Feb 21)

Software Fuzzing Benefits

• Software fuzzing offers numerous benefits to improve
the resilience of applications
– Fuzzing improves software security through verifiable testing

• Random values generated by the tester can be stored to reveal test
cases that cause negative behavior

– Bugs typically found by fuzzing are the ones that fail to get noticed
by traditional requirements based testing
• Bugs identified from fuzzing include software weaknesses used by

hackers via crashes, memory leaks, unhandled exceptions, etc.

Approved for Public Release
21-MDA-10707 (23 Feb 21)

Software Fuzz Tester Limitations

• Fuzz testing alone cannot provide a complete picture of
an overall security threat or bugs

• Fuzz testing is less effective for dealing with security
threats that do not cause program crashes, such as
some viruses, worms, Trojans, etc.

• Fuzz testing is limited in detecting complex faults or
threats

• Narrow focus of this this research topic is on
contemporary fuzz testers 2 major deficiencies:
– They offer no guidance regarding how to size the software

modules that will be fuzzed; and,
– They offer no guidance regarding how long the software modules

should be tested
Approved for Public Release
21-MDA-10707 (23 Feb 21)

Projected Need
1 of 4

• Develop guidance for fuzz tester deficiencies (code
coverage and run time) by performing empirical
assessments of representative MDA tactical software

– Research needs to include benchmarking of various fuzz testing
tools for code coverage and runtime against representative
“nontrivial” MDA tactical software for comparison on performance

– Research needs to provide selection of fuzz testing tools selected
for this effort along with rationale. Include specific goals of effort
along with planned percentage improvement (WRT performance)
from this effort

Approved for Public Release
21-MDA-10707 (23 Feb 21)

Projected Need
2 of 4

• While software is under development, unit testers need a way to plan
for fuzz tests. Does the complexity of MDA’s contemporary software
systems require unique sizing/fuzzing requirements? (Does a
fuzzing approach for a real-time software system with hard delays
apply for a non-real-time/server based system?)
– Unit testing is performed by the software developer of the Unit Module.

Research needs to assess the feasibility to integrate fuzz testing tools
into the software development environment and enable the software
developer to perform fuzz testing as part of unit testing

– Research needs to weigh the costs of performing fuzz testing during unit
testing against the advantages

– Research needs to develop mechanisms that mitigate the costs of
performing fuzz testing during unit testing

– Research should consider other factors like training and software
development process factors

Approved for Public Release
21-MDA-10707 (23 Feb 21)

Projected Need
3 of 4

• When fuzzing, software containers are frequently used to establish a
software test module. Characterize the software that should be
placed within a single container to guarantee code coverage and the
amount of time it takes to obtain that level of certainty. (establish
guarantees parametrically paired with code size/runtime)

– Research needs to identify the optimal sizing of software units associated
with unit testing

– Research needs to consider the minimal combination / integration of
software units enabling the optimization of fuzz testing

– Research needs to consider the employment of fuzz testing during
continuous integration of software units

CUI

Approved for Public Release
21-MDA-10707 (23 Feb 21)

Projected Need
4 of 4

• Once software has completed development, fuzzing can be used on
the attack surface of the executable. Fuzzing the inputs will
stimulate numerous datapaths within the system; however, the
runtime of the fuzzer could possibly require large amount of time to
stimulate and fuzz. Establish a method to determine the level of
certainty for code’s coverage to be stimulated over time to achieve
10%, 25%, 50%, 75%, and 90% code coverage of a representative
tactical executable.
– Researchers need to provide benchmarking for the stated code coverage

goals

– Researchers need to capture data path coverage from previous testing
efforts (unit testing, integration testing…) and identify data paths not
covered and provide prioritization mechanisms for coverage and assess
augmentation by post development fuzz testing

– Researchers need to determine a means to efficiently incorporate fuzz
testing in software development regression testing Approved for Public Release

21-MDA-10707 (23 Feb 21)

	Characterizing Test Parameters for Software Fuzzing Applied to MDA Tactical Software
	Software Fuzzing – �Testing Software for Vulnerabilities
	Software Fuzzing Benefits
	Software Fuzz Tester Limitations
	Projected Need �1 of 4
	Projected Need �2 of 4
	Projected Need �3 of 4
	Projected Need �4 of 4

