Propulsion-Related Signature Modeling (PRSM) provides the capability to simulate boost and post-boost target phenomenology scenes from missile launch through re-entry to include plumes, effluent trails, wakes and plume induced body heating. This modeling capability is required to support BMDS system trade studies such as sensor band-pass selection, noise equivalent target (NET) requirements and dynamic range beyond pre-existing experimental measurement databases.

Model Development and Application:
The overall program is directed at the development, validation and dissemination of models and experimental measurement techniques capable of accurate characterization of all propulsion sub-system related signatures. Propulsion-related signature modeling provides strong continuing support to the on-going Missile Defense Elements and Programs. The tools must cover the altitude range from sea level to space for a variety of sensor applications and range from the highest achievable fidelity—to engineering models for integration into real time HWIL and Digital Simulations.

Current Modeling Capabilities:
- Rocket Performance/Combustion Assessments
- Continuum thru Rarefied Plume Flowfields
- Passive and Active Signatures
 - UV/VIS/SWIR/MWIR/LWIR
 - LADAR and RADAR Attenuation/RCS
- Post-Boost Phenomena and Countermeasures

Examples of “Real World” Propulsion Related Events
- Silo/TEL Launches
- Boost Phase Plume Signatures
- Staging Events/Thrust Termination/Booster Burnout
- Boost Maneuvering such as Angle-of-Attack
- Interceptor DACS Plume Characterization